• English
    • español
    • português (Brasil)
  • English 
    • English
    • español
    • português (Brasil)
  • Login
View Item 
  •   COVID-19
  • Resources in English
  • Technical documents and research evidence on COVID-19
  • View Item
  •   COVID-19
  • Resources in English
  • Technical documents and research evidence on COVID-19
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Atazanavir inhibits SARS-CoV-2 replication and pro-inflammatory cytokine production

 
Thumbnail
Date
2020-04-04
Author
Fintelman-Rodrigues, Natalia et al.
Metadata
Show full item record
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of the ongoing pandemic of 2019 CoV disease (COVID-19), which is already responsible for far more deaths than were reported during the previous public health emergencies of international concern provoked by two related pathogenic coronaviruses (CoVs) from 2002 and 2012. The identification of any clinically approved drug that could be repurposed to combat COVID-19 would allow the rapid implementation of potentially life-saving procedures to complement social distancing and isolation protocols. The major protease (Mpro) of SARS-CoV-2 is considered a promising target for drug interventions, based on results from related CoVs with lopinavir (LPV) an HIV protease inhibitor, that that can inhibit the Mpro of 2002 SARS-CoV. However, limited evidence exists for other clinically approved anti-retroviral protease inhibitors that may bind more efficiently to Mpro from SARS-CoV-2 and block its replication. Of high interest is atazanavir (ATV) due to its documented bioavailability within the respiratory tract, which motivated our evaluation on its ability to impair SARS-CoV-2 replication through a series of in vitro experiments. A molecular dynamic analysis showed that ATV could dock in the active site of SARS-CoV-2 Mpro with greater strength than LPV and occupied the substrate cleft on the active side of the protease throughout the entire molecular dynamic analysis. In a cell-free protease assay, ATV was determined to block Mpro activity at a concentration of 10 μM. Next, a series of assays with in vitro models of virus infection/replications were performed using three cell types, Vero cells, a human pulmonary epithelial cell line and primary human monocytes, which confirmed that ATV could inhibit SARS-CoV-2 replication, alone or in combination with ritonavir (RTV). In addition, the virus-induced levels of IL-6 and TNF-α were reduced in the presence of these drugs, which performed better than chloroquine, a compound recognized for its anti-viral and anti-inflammatory activities. Together, our data strongly suggest that ATV and ATV/RTV should be considered among the candidate repurposed drugs undergoing clinical trials in the fight against COVID-19.
URI
https://www.biorxiv.org/content/10.1101/2020.04.04.020925v1.full.pdf
Collections
  • Technical documents and research evidence on COVID-19

Browse

AllCommunities & CollectionsBy Issue DateAuthorsTitlesCategorySubjectsThis CollectionBy Issue DateAuthorsTitlesCategorySubjects

My Account

LoginRegister

Pan American Health Organization
World Health Organization. Regional Office for the Americas
525 Twenty-third Street, N.W., Washington, D.C. 20037, United States of America

Content Disclaimer (Important notes about the material)

Links

  • WHO International Clinical Trial Registry Platform (ICTRP)
  • WHO Coronavirus disease R&D Blueprint
  • WHO Database of Publications on Coronavirus Disease
  • PAHO Coronavirus Disease
  • PAHO/BIREME Windows of Knowledge COVID-19
  • Evidence aid Coronavirus (COVID-19) resources

  • PAHO Digital Library (IRIS PAHO)
  • Virtual Health Library (VHL)
  • Global Index Medicus (GIM)